154 research outputs found

    Influence of low back pain and its remission on motor abundance in a low-load lifting task

    Get PDF
    Having an abundance of motor solutions during movement may be advantageous for the health of musculoskeletal tissues, given greater load distribution between tissues. The aim of the present study was to understand whether motor abundance differs between people with and without low back pain (LBP) during a low-load lifting task. Motion capture with electromyography (EMG) assessment of 15 muscles was performed on 48 participants [healthy control (con) = 16, remission LBP (rLBP) = 16, current LBP (cLBP) = 16], during lifting. Non-negative matrix factorization and uncontrolled manifold analysis were performed to decompose inter-repetition variability in the temporal activity of muscle modes into goal equivalent (GEV) and non-goal equivalent (NGEV) variabilities in the control of the pelvis and trunk linear displacements. Motor abundance occurs when the ratio of GEV to NGEV exceeds zero. There were significant group differences in the temporal activity of muscle modes, such that both cLBP and rLBP individuals demonstrated greater activity of muscle modes that reflected lumbopelvic coactivation during the lifting phase compared to controls. For motor abundance, there were no significant differences between groups. Individuals with LBP, including those in remission, had similar overall motor abundance, but use different activation profiles of muscle modes than asymptomatic people during lifting

    Surface EMG amplitude does not identify differences in neural drive to synergistic muscles

    Get PDF
    Surface electromyographic (EMG) signal amplitude is typically used to compare the neural drive to muscles. We experimentally investigated this association by studying the motor unit (MU) behavior and action potentials in the vastus medialis (VM) and vastus lateralis (VL) muscles. Eighteen participants performed isometric knee extensions at four target torques [10, 30, 50 and 70% of the maximum torque (MVC)] while high-density EMG signals were recorded from the VM and VL. The absolute EMG amplitude was greater for VM than VL (p<0.001) while the EMG amplitude normalized with respect to MVC was greater for VL than VM (p<0.04). Because differences in EMG amplitude can be due to both differences in the neural drive and in the size of the MU action potentials, we indirectly inferred the neural drives received by the two muscles by estimating the synaptic inputs received by the corresponding motor neuron pools. For this purpose, we analyzed the increase in discharge rate from recruitment to target torque for motor units matched by recruitment threshold in the two muscles. This analysis indicated that the two muscles received similar levels of neural drive. Nonetheless, the size of the MU action potentials was greater for VM than VL (p<0.001) and this difference explained most of the differences in EMG amplitude between the two muscles (~63% of explained variance). These results indicate that EMG amplitude, even following normalization, does not reflect the neural drive to synergistic muscles. Moreover, absolute EMG amplitude is mainly explained by the size of MU action potentials

    Individuals with patellofemoral pain syndrome have altered inter-leg force coordination.

    Get PDF
    BACKGROUND:Patellofemoral pain syndrome (PFPS) is one of the most common musculoskeletal disorders. Pain may be further exacerbated by atypical motor coordination strategies. It has been thought that low coordination variability may concentrate loads onto painful knee tissues. RESEARCH QUESTION:To investigate if inter-limb force coordination is altered between individuals with and without PFPS. METHODS:31 individuals (control = 17, PFPS = 14) performed bilateral vertical hopping, on two force plates at three frequencies (2.2, 2.6, 3.0 Hz). Uncontrolled manifold analysis (UCM) was used to provide an index of motor abundance (IMA) in the coordination of inter-limb forces to stabilize the two-limb's total force. UCM was applied to the study of forces in each plane (medial-lateral (ML), anterior-posterior (AP), vertical). Bayesian Functional Data Analysis was used for statistical inference. We calculated the mean (u) with 95 % credible interval (CrI) of the difference ΔIMAcon>PFPS between the two groups. We also calculated the probability PΔIMAcon>PFPS>0data). RESULTS:Individuals with PFPS had the greatest significant decrement from controls at 6% of stance hopping at 2.6 Hz by a mean difference of -0.23 for ML GRF; at 19 % of stance hopping at 2.2 Hz by a mean difference of -0.14 for AP GRF; and 52 % of stance hopping at 2.6 Hz by a mean difference of -0.14 for vertical GRF. For vertical GRF, there was a > 0.95 probability that controls had greater IMA than individuals with PFPS hopping between 12-13% of stance at 2.2 Hz, and between 48-55% at 2.6 Hz. SIGNIFICANCE:Individuals with PFPS have reduced inter-leg force coordination for impact force attenuation and body support, compared to asymptomatic controls. The present study provides insights into a plausible mechanism underpinning persistent knee pain which could be used in the development of novel rehabilitative approaches for individuals with PFPS

    Classifying neck pain status using scalar and functional biomechanical variables – development of a method using functional data boosting

    Get PDF
    Background Individuals with neck pain have different movement and muscular activation (collectively termed as biomechanical variables) patterns compared to healthy individuals. Incorporating biomechanical variables as covariates into prognostic models is challenging due to the high dimensionality of the data. Research question What is the classification performance of neck pain status of a statistical model which uses both scalar and functional biomechanical covariates? Methods Motion capture with electromyography assessment on the sternocleidomastoid, splenius cervicis, erector spinae, was performed on 21 healthy and 26 individuals with neck pain during walking over three gait conditions (rectilinear, curvilinear clockwise (CW) and counterclockwise (CCW)). After removing highly collinear variables, 94 covariates across the three conditions were used to classify neck pain status using functional data boosting (FDboost). Results Two functional covariates trunk lateral flexion angle during CCW gait, and trunk flexion angle during CW gait; and a scalar covariate, hip jerk index during CCW gait were selected. The model achieved an estimated AUC of 80.8%. For hip jerk index, an increase in hip jerk index by one unit increased the log odds of being in the neck pain group by 0.37. A 1° increase in trunk lateral flexion angle throughout gait alone reduced the probability of being in the neck pain group from 0.5 to 0.15. A 1° increase in trunk flexion angle throughout gait alone increased the probability of being in the neck pain group from 0.5 to 0.9. Significance Interpreting the physiological significance of the extracted covariates, with other biomechanical variables, suggests that individuals with neck pain performed curvilinear walking using a stiffer strategy, compared to controls; and this increased the risk of being in the neck pain group. FDboost can produce clinically interpretable models with complex high dimensional data and could be used in future prognostic modelling studies in neck pain research

    Blood biomarkers role in acute ischemic stroke patients:higher is worse or better?

    Get PDF
    BACKGROUND: Thrombolytic therapy (TT) for acute ischemic stroke (AIS) can provoke bleeding’s complication depending on the ischemic lesion (IL) dimension. Inflammation involved in the setting of acute ischaemic stroke, is associated with infarct size. We aimed to study the independent correlation and association between clinical panel of routinely identified biomarkers, including inflammatory parameters, and cerebral IL dimension and site. RESULTS: We evaluated eleven biomarkers in 105 unrelated patients during their hospitalization after acute stroke event. Our data indicate a significant association of: a) confluent IL size with 4th quartile of Erythrocyte Sedimentation Rate (ESR) (OR = 5.250; 95% CI, 1.002 to 27.514) and an independent correlation with sex; b) confluent IL size with 3rd quartile of fibrinogen (OR = 5.5; 95% CI, 1.027 to 29.451); c) confluent IL size with 3rd quartile of platelets (OR= 0.059; 95% CI, 0.003 to 1.175) and independent correlation with sex; d) smaller IL size (OR = 5.25; 95% CI, 1.351 to 20.396) with 3rd quartile of albumin levels and nodular and parenchimal IL size with 2nd (OR = 0.227; 95% CI, 0.053 to 0.981), 3rd (OR = 0.164; 95% CI, 0.038 to 0.711) and 4th (OR = 0.205; 95% CI, 0.048 to 0.870) quartiles albumin levels; e) smaller IL size with 3rd quartile triglycerides (TG) levels (OR = 9; 95% CI, 2.487 to 32.567) and an independent correlation with anterior location. Smaller IL size, anterior AIS turned out to be independently correlated with high serum albumin levels. Finally, high INR and PTT values were associated with worse NIHSS clinical outcomes in contrast to that observed with higher albumin level. CONCLUSIONS: We provide evidence of routine biomarkers levels correlation with acute IL size, independently of age and sex. In addition, we highlight the importance of differentiation of biomarkers normal interval levels for further improvement not only of the clinical decision making but also in post-acute clinical outcome management

    Testis Sparing Surgery of Small Testicular Masses: Retrospective Analysis of a Multicenter Cohort

    Get PDF
    PURPOSE: We evaluated possible factors predicting testicular cancer in patients undergoing testis sparing surgery. MATERIALS AND METHODS: We retrospectively analyzed the records of all patients who underwent testis sparing surgery for a small testicular mass at a total of 5 centers. All patients with 1 solitary lesion 2 cm or less on preoperative ultrasound were enrolled in the study. Testis sparing surgery consisted of tumor enucleation for frozen section examination. Immediate radical orchiectomy was performed in all cases of malignancy at frozen section examination but otherwise the testes were spared. Univariate and multivariate analysis were performed and ROC curves were produced to evaluate preoperative factors predicting testicular cancer. RESULTS: Overall 147 patients were included in the study. No patient had elevated serum tumor markers. Overall 21 of the 147 men (14%) presented with testicular cancer. On multivariate analysis the preoperative ultrasound diameter of the lesion was a predictor of malignancy (OR 6.62, 95% CI 2.26-19.39, p=0.01). On ROC analysis lesion diameter had an AUC of 0.75 (95% CI 0.63-0.86, p=0.01) to predict testicular cancer. At the best cutoff of 0.85 the diameter of the lesion had 81% sensitivity, 58% specificity, 24% positive predictive value and 95% negative predictive value. CONCLUSIONS: Our study confirms that small testicular masses are often benign and do not always require radical orchiectomy. Preoperative ultrasound can assess lesion size and the smaller the nodule, the less likely that it is malignant. Therefore, we suggest a stepwise approach to small testicular masses, including tumorectomy, frozen section examination and radical orchiectomy or testis sparing surgery according to frozen section examination results

    Classifying individuals with and without patellofemoral pain syndrome using ground force profiles - Development of a method using functional data boosting.

    Get PDF
    BACKGROUND:Predictors of recovery in patellofemoral pain syndrome (PFPS) currently used in prognostic models are scalar in nature, despite many physiological measures originally lying on the functional scale. Traditional modelling techniques cannot harness the potential predictive value of functional physiological variables. RESEARCH QUESTION:What is the classification performance of PFPS status of a statistical model when using functional ground reaction force (GRF) time-series? METHODS:Thirty-one individuals (control = 17, PFPS = 14) performed maximal countermovement jumps, on two force plates. The three-dimensional components of the GRF profiles were time-normalized between the start of the eccentric phase and take-off, and used as functional predictors. A statistical model was developed using functional data boosting (FDboost), for binary classification of PFPS statuses (control vs PFPS). The area under the Receiver Operating Characteristic curve (AUC) was used to quantify the model's ability to discriminate the two groups. RESULTS:The three predictors of GRF waveform achieved an average out-of-bag AUC of 93.7 %. A 1 % increase in applied medial force reduced the log odds of being in the PFPS group by 0.68 at 87 % of jump cycle. In the AP direction, a 1 % reduction in applied posterior force increased the log odds of being classified as PFPS by 1.10 at 70 % jump cycle. For the vertical GRF, a 1 % increase in applied force reduced the log odds of being classified in the PFPS group by 0.12 at 44 % of the jump cycle. SIGNIFICANCE:Using simple functional GRF variables collected during functionally relevant task, in conjunction with FDboost, produced clinically interpretable models that retain excellent classification performance in individuals with PFPS. FDboost may be an invaluable tool to be used in longitudinal cohort prognostic studies, especially when scalar and functional predictors are collected

    Interpretable machine learning models for classifying low back pain status using functional physiological variables.

    Get PDF
    PURPOSE:To evaluate the predictive performance of statistical models which distinguishes different low back pain (LBP) sub-types and healthy controls, using as input predictors the time-varying signals of electromyographic and kinematic variables, collected during low-load lifting. METHODS:Motion capture with electromyography (EMG) assessment was performed on 49 participants [healthy control (con) = 16, remission LBP (rmLBP) = 16, current LBP (LBP) = 17], whilst performing a low-load lifting task, to extract a total of 40 predictors (kinematic and electromyographic variables). Three statistical models were developed using functional data boosting (FDboost), for binary classification of LBP statuses (model 1: con vs. LBP; model 2: con vs. rmLBP; model 3: rmLBP vs. LBP). After removing collinear predictors (i.e. a correlation of > 0.7 with other predictors) and inclusion of the covariate sex, 31 predictors were included for fitting model 1, 31 predictors for model 2, and 32 predictors for model 3. RESULTS:Seven EMG predictors were selected in model 1 (area under the receiver operator curve [AUC] of 90.4%), nine predictors in model 2 (AUC of 91.2%), and seven predictors in model 3 (AUC of 96.7%). The most influential predictor was the biceps femoris muscle (peak [Formula: see text]  = 0.047) in model 1, the deltoid muscle (peak [Formula: see text] =  0.052) in model 2, and the iliocostalis muscle (peak [Formula: see text] =  0.16) in model 3. CONCLUSION:The ability to transform time-varying physiological differences into clinical differences could be used in future prospective prognostic research to identify the dominant movement impairments that drive the increased risk. These slides can be retrieved under Electronic Supplementary Material

    Timing of surgery following SARS‐CoV‐2 infection: an international prospective cohort study

    Get PDF
    Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4–1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0–2 weeks, 3–4 weeks and 5–6 weeks of the diagnosis (odds ratio (95%CI) 4.1% (3.3–4.8), 3.9% (2.6–5.1) and 3.6% (2.0–5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5% (0.9– 2.1%)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2–8.7) vs. 2.4% (95%CI 1.4–3.4) vs. 1.3% (95%CI 0.6–2.0%), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay
    corecore